Applied Sciences (Nov 2021)
Evaluation of the Adhesive Potential of Bacteria Isolated from Meat-Related Sources
Abstract
Microbial adhesion constitutes the transition of microorganisms from a planktonic mode to a static one. It promotes the formation of biofilm which is responsible for spoilage, foodborne diseases, and corrosion in the food processing industry. In this study, the adhesive potential of fourteen meat-borne bacterial isolates belonging to seven different genera was investigated. All strains were found able to colonize polystyrene surfaces with different levels of firmness. Significant variations were determined in assays of bacterial hydrophobicity and motility. Among the 14 strains, Pseudomonas fragi, Aeromonas salmonicida II, Serratia liquefaciens, Citrobacter braakii, Pseudomonas putida, and Aeromonas veronii had a strong hydrophobic force, while the isolates of Lactobacillus genus showed the most hydrophilic property. In terms of motility, Citrobacter braakii and Escherichia coli exhibited exceptional swarming and swimming abilities, whilst conservatively weak performances were observed in the Lactobacillus strains. Furthermore, the majority of the isolates were predominantly electron donors and weak electron acceptors. Overall, a high level of correlation was observed between biofilm-forming ability with cell surface hydrophobicity and Lewis acid–base properties, whereas the contribution of motility in bacterial adhesion could not be confirmed. Research on the adhesive performance of foodborne bacteria is potentially conducive to developing novel control strategies, such as food processing equipment with specific surfaces, not facilitating attachment.
Keywords