Antioxidants (Dec 2022)

Sesamol Attenuates Renal Inflammation and Arrests Reactive-Oxygen-Species-Mediated IL-1β Secretion via the HO-1-Induced Inhibition of the IKKα/NFκB Pathway In Vivo and In Vitro

  • Kuo-Feng Tseng,
  • Ping-Hsuan Tsai,
  • Jie-Sian Wang,
  • Fang-Yu Chen,
  • Ming-Yi Shen

DOI
https://doi.org/10.3390/antiox11122461
Journal volume & issue
Vol. 11, no. 12
p. 2461

Abstract

Read online

Chronic nephritis leads to irreversible renal fibrosis, ultimately leading to chronic kidney disease (CKD) and death. Macrophage infiltration and interleukin 1β (IL-1β) upregulation are involved in inflammation-mediated renal fibrosis and CKD. Sesamol (SM), which is extracted from sesame seeds, has antioxidant and anti-inflammatory properties. We aimed to explore whether SM mitigates macrophage-mediated renal inflammation and its underlying mechanisms. ApoE–/– mice were subjected to 5/6 nephrectomy (5/6 Nx) with or without the oral gavage of SM for eight weeks. Blood and urine samples and all the kidney remnants were collected for analysis. Additionally, THP-1 cells were used to explore the mechanism through which SM attenuates renal inflammation. Compared with the sham group, the 5/6 Nx ApoE–/– mice exhibited a significant increase in the macrophage infiltration of the kidneys (nephritis), upregulation of IL-1β, generation of reactive oxygen species, reduced creatinine clearance, and renal fibrosis. However, the administration of SM significantly alleviated these effects. SM suppressed the H2O2-induced secretion of IL-1β from the THP-1 cells via the heme oxygenase-1-induced inhibition of the IKKα-NF-κB pathway. SM attenuated renal inflammation and arrested macrophage accumulation by inhibiting IKKα, revealing a novel mechanism of the therapeutic effects of SM on renal injury and offering a potential approach to CKD treatment.

Keywords