E3S Web of Conferences (Jan 2021)
Effect and mechanism of C2HF5 on premixed flame of runaway gas (syngas) in lithium-ion batteries
Abstract
Lithium-ion battery is a new type of clean energy. Due to manufacturing defects, improper use, unexpected accidents and other reasons, lithium-ion battery thermal runaway fire and explosion accidents are frequently re-ported, and its safety has become an important issue to be solved. In this paper, the effect of second-generation halon substitute C2HF5 on runaway gas premix flame of lithium-ion battery are studied by experiments and numerical simulations.The bunsen burner was used to measure the changing trend of the premixed flame velocity of the runaway gas/air under different equivalent ratios and different concentrations of C2HF5. The results show that the flame velocity is in good consistency with the model under the conditions of lean flame and low inhibitor addition.The promotion effect of inhibitors on combustion has been verified by bunsen flame. Compared with CH4, C2HF5 is more suitable for inhibiting syngas flame of lithium-ion batteries, and the effect on the rich flames is better than lean flames.