Energies (Jan 2021)

Liquid Air as an Energy Carrier for Liquefied Natural Gas Cold Energy Distribution in Cold Storage Systems

  • Sanghyun Che,
  • Juwon Kim,
  • Daejun Chang

DOI
https://doi.org/10.3390/en14020272
Journal volume & issue
Vol. 14, no. 2
p. 272

Abstract

Read online

Liquid air can be employed as a carrier of cold energy obtained from liquefied natural gas (LNG) and surplus electricity. This study evaluates the potential of liquid air as a distributed source with a supply chain for a cold storage system using liquid air. Energy storing and distributing processes are conceptually designed and evaluated considering both the thermodynamic and economic aspects. Further, the proposed supply chain is compared with a conventional NH3/CO2 cascade refrigeration system. The thermodynamic analysis demonstrates that the exergy efficiency and the coefficient of performance of the proposed supply chain are 22% and 0.56, respectively. Economic analysis is based on a life cycle cost (LCC) evaluation. From the economic analysis, the liquid air production cost and the LCC of a liquid air cold storage system (LACS) are estimated to be 40.4 USD/ton and 34.2 MMUSD, respectively. The LCC is reduced by 19% in the LACS compared with the conventional refrigeration system. The proposed supply chain is economically feasible, although its thermodynamic performances are lower than those of the conventional system. The sensitivity analysis indicates that LNG mass flow rate in the air liquefaction system and the cold storage operating time are dominant parameters affecting the economic performance.

Keywords