PLoS ONE (Jan 2022)
Magnitude, pattern and correlates of multimorbidity among patients attending chronic outpatient medical care in Bahir Dar, northwest Ethiopia: The application of latent class analysis model.
Abstract
ObjectiveThis study aimed to investigate the magnitude, pattern and associated factors of multimorbidity in Bahir Dar, northwest Ethiopia.MethodsA multi-centered facility-based study was conducted among 1440 participants aged 40+ years attending chronic outpatient medical care. Two complementary methods (interview and review of medical records) were employed to collect data on socio-demographic, behavioral and disease related characteristics. The data were analyzed by STATA V.16 and R Software V.4.1.0. We fitted logistic regression and latent class analyses (LCA) models to identify the factors associated with multimorbidity and determine patterns of disease clustering, respectively. Statistical significance was considered at P-value ResultsThe magnitude of individual chronic conditions ranged from 1.4% (cancer) to 37.9% (hypertension), and multimorbidity was identified in 54.8% (95% CI = 52.2%-57.4%) of the sample. The likelihood of having multimorbidity was higher among participants aged 45-54 years (AOR: 1.6, 95%CI = 1.1, 2.2), 55-64 years (AOR: 2.6, 95%CI = 1.9, 3.6) and 65+ years (AOR: 2.6, 95%CI = 1.9, 3.6) compared to those aged 40-44 years. The odds of multimorbidity was also higher among individuals classified as overweight (AOR: 1.6, 95%CI = 1.2, 2.1) or obese (AOR: 1.9, 95%CI = 1.3, 3.0) than the normal weight category. Four patterns of multimorbidity were identified; the cardiovascular category being the largest class (50.2%) followed by the cardio-mental, (32.6%), metabolic (11.5%) and respiratory (5.7%) groups. Advanced age, being overweight and obesity predicted latent class membership, adjusting for relevant confounding factors.ConclusionsThe magnitude of multimorbidity in this study was high, and the most prevalent conditions shaped the patterns of multimorbidity. Advanced age, being overweight and obesity were the factors correlated with multimorbidity. Further research is required to better understand the burden of multimorbidity and related factors in the population, and to determine the impact of multimorbidity on individuals' well-being and functioning.