Environmental Research Letters (Jan 2024)

An uncertain future change in aridity over the tropics

  • Paul-Arthur Monerie,
  • Robin Chadwick,
  • Laura J Wilcox,
  • Andrew G Turner

DOI
https://doi.org/10.1088/1748-9326/ad42b8
Journal volume & issue
Vol. 19, no. 5
p. 054048

Abstract

Read online

An ensemble of climate models from phase six of the Coupled Model Intercomparison Project shows that temperature and potential evapotranspiration (PET) are projected to increase globally towards the end of the 21st century. However, climate models show a spatially heterogeneous change in precipitation over the tropics. Consequently, future changes in aridity (a measure of water availability) are complex and location-dependent. We assess future changes in aridity using three climate models and several single-forcing experiments. Near-term (2021–2040) changes in aridity are small, and we focus instead on its long-term (2081–2100) changes. We show that the increase in greenhouse gases (GHG) primarily explains the spatial pattern, magnitude and ensemble spread of the long-term future changes in aridity. On this timescale, the effects of changes in emissions of anthropogenic aerosols are moderate compared to the effects of increases in atmospheric GHG concentrations. Model diversity in the responses to GHG concentration is large over northern Africa and North and South America. We suggest the large uncertainty is due to differences between models in simulating the effects of an increase in GHG concentrations on surface air temperature over the North Atlantic Ocean, on the interhemispheric temperature gradient, and on PET over North and South America.

Keywords