Journal of Lipid Research (Dec 2012)
Hypomorphic sialidase expression decreases serum cholesterol by downregulation of VLDL production in mice
Abstract
Lipoprotein metabolism is an important contributing factor in the development and progression of atherosclerosis. Plasma lipoproteins and their receptors are heavily glycosylated and sialylated, and levels of sialic acids modulate their biological functions. Sialylation is controlled by the activities of sialyltranferases and sialidases. To address the impact of sialidase (neu1) activity on lipoprotein metabolism, we have generated a mouse model with a hypomorphic neu1 allele (B6.SM) that displays reduced sialidase expression and sialidase activity. The objectives of this study are to determine the impact of sialidase on the rate of hepatic lipoprotein secretion and lipoprotein uptake. Our results indicate that hepatic levels of cholesterol and triglycerides are significantly higher in B6.SM mice compared with C57Bl/6 mice; however, VLDL-triglyceride production rate is lower. In addition, B6.SM mice show significantly lower levels of hepatic microsomal triglyceride transfer protein (MTP) and active sterol-regulatory element binding protein (SREBP)-2 but higher levels of diglyceride acyltransferase (DGAT)2; these are all indicative of increased hepatic lipid storage. Rescue of sialidase activity in hypomorphic sialidase mice using helper-dependent adenovirus resulted in increased VLDL production and an increase in MTP levels. Furthermore, hypomorphic sialidase expression results in stabilization of hepatic LDL receptor (LDLR) protein expression, which enhances LDL uptake. These findings provide novel evidence for a central role of sialidase in the cross talk between the uptake and production of lipoproteins.