Buildings (Nov 2023)

Study on the Performance of Polymer-Modified Conductive Cement-Based Materials

  • Min Li,
  • Jianjun Zhong,
  • Guoqing Li,
  • Qianyi Zhang,
  • Feng Cen,
  • Peiwei Gao

DOI
https://doi.org/10.3390/buildings13122961
Journal volume & issue
Vol. 13, no. 12
p. 2961

Abstract

Read online

In order to study the synergistic effect of polymer and conductive functional materials on the properties of cement-based materials, polymer conductive cement-based materials were prepared by mixing four polymer lotions of silicon–acrylate emulsion (SG), phenylacrylic emulsion (SR), waterborne epoxy resin emulsion (SH), and acrylic emulsion (SX) with carbon fiber (CF) and carbon black (CB), two conductive functional materials, in a certain proportion. The effects of the different polymer–cement ratios (P/C) of the four polymers on the physical, mechanical, and electrical properties of conductive cement-based materials were studied. The results illustrated that SH improved the fluidity of cement paste, and the four polymers all had a delaying effect, which led to the hardening of the specimens and the extension of the demoulding specimens to varying degrees. SH and SR can increase the ratio of flexural strength to compressive strength (F/C) in cement paste and improve the toughness of materials, and the maximum value is reached when the P/C is 0.15. Except for SX, the other three polymer lotions can reduce the resistivity of cement paste, which is beneficial to the improvement of conductivity. The improvement sequence is SH > SR > SG. Among them, both SH group and SR group achieved the lowest electrical resistivity at the P/C of 0.15. The four kinds of polymer lotion can significantly reduce the water absorption of the specimen and promote the waterproof performance. The improvement effect: SH > SR > SG > SX. Among them, both the SH group and SR group achieved the minimum water absorption at the P/C of 0.15.

Keywords