Molecules (Jan 2021)
Forty-One Plant Extracts Screened for Dual Antidiabetic and Antioxidant Functions: Evaluating the Types of Correlation between α-Amylase Inhibition and Free Radical Scavenging
Abstract
Dysregulation of glucose homeostasis followed by chronic hyperglycemia is a hallmark of diabetes mellitus (DM), a disease spreading as a worldwide pandemic for which there is no satisfactory dietary treatment or cure. The development of glucose-controlling drugs that can prevent complications of DM, such as hyperglycemia and oxidative stress, which contribute to the impairment of the key physiological processes in the body, is of grave importance. In pursuit of this goal, this study screened 41 plant extracts for their antidiabetic and antioxidant activities by employing assays to test for α-amylase inhibition and free radical scavenging activity (FRSA) and by measuring glucose uptake in L6-GLUT4myc cells. While extracts of Rhus coriaria, Punica granatum, Olea europaea, Pelargonium spp., Stevia rebaudiana, and Petroselinum crispum demonstrated significant α-amylase inhibition, the extracts of Rhus coriaria and Pelargonium spp. also demonstrated increased FRSA, and the extract of Rhus coriaria stimulated glucose uptake. These natural extracts, which are believed to have fewer side effects because they are prepared from edible plants, interfere with the process in the small intestine that breaks down dietary carbohydrates into monosaccharide and disaccharide derivatives, and thereby suppress increases in diet-induced blood glucose; hence, they may have clinical value for type 2 diabetes management. The Pelargonium spp. and Rhus coriaria extracts demonstrated the highest antidiabetic and antioxidant activities. Both plants may offer valuable medical benefits, especially because they can be taken as dietary supplements by patients with diabetes and can serve as sources of new, natural-based antidiabetic drug candidates. The enhancement of cellular glucose uptake stimulated by Rhus coriaria extract could lead to the development of clinical applications that regulate blood glucose levels from within the circulatory system. Isolating bioactive substances from these plant extracts and testing them in diabetic mice will significantly advance the development of natural drugs that have both antidiabetic and free radical-scavenging properties, likely with lesser side effects.
Keywords