Nonlinear Processes in Geophysics (Apr 2018)

Wave propagation in the Lorenz-96 model

  • D. L. van Kekem,
  • A. E. Sterk

DOI
https://doi.org/10.5194/npg-25-301-2018
Journal volume & issue
Vol. 25
pp. 301 – 314

Abstract

Read online

In this paper we study the spatiotemporal properties of waves in the Lorenz-96 model and their dependence on the dimension parameter n and the forcing parameter F. For F > 0 the first bifurcation is either a supercritical Hopf or a double-Hopf bifurcation and the periodic attractor born at these bifurcations represents a traveling wave. Its spatial wave number increases linearly with n, but its period tends to a finite limit as n → ∞. For F < 0 and odd n, the first bifurcation is again a supercritical Hopf bifurcation, but in this case the period of the traveling wave also grows linearly with n. For F < 0 and even n, however, a Hopf bifurcation is preceded by either one or two pitchfork bifurcations, where the number of the latter bifurcations depends on whether n has remainder 2 or 0 upon division by 4. This bifurcation sequence leads to stationary waves and their spatiotemporal properties also depend on the remainder after dividing n by 4. Finally, we explain how the double-Hopf bifurcation can generate two or more stable waves with different spatiotemporal properties that coexist for the same parameter values n and F.