Scientific Reports (Aug 2023)

Optimization of enzyme-assisted microwave extraction of Zanthoxylum limonella essential oil using response surface methodology

  • Sarunpron Khruengsai,
  • Nittirat Promhom,
  • Teerapong Sripahco,
  • Piyanuch Siriwat,
  • Patcharee Pripdeevech

DOI
https://doi.org/10.1038/s41598-023-40142-4
Journal volume & issue
Vol. 13, no. 1
pp. 1 – 11

Abstract

Read online

Abstract Zanthoxylum limonella essential oil possesses potential antimicrobial activity and is of considerable interest as food flavouring and traditional herb. In this study, an enzymolysis-pretreatment-microwave-assisted extraction (EP-MAE) method was used to extract Z. limonella essential oil. The response surface methodology (RSM) with Plackett–Burman design (PBD) and Box-Behnken design (BBD) models were employed to optimize conditions in the EP-MAE method. Seven variables including water to plant ratio, enzyme amount, incubation temperature, incubation time, shaking speed, microwave time, and microwave power were selected to determine the optimal values for extracting Z. limonella essential oil. As the results, four variables including water to plant ratio, enzyme amount, microwave time and power were evaluated as significant variables affecting on yield and volatile compounds of Z. limonella essential oil from both PBD and BBD experiments. The optimum conditions of EP-MAE was obtained as follows: water to plant ratio (11.16 mL/g), enzyme amount (0.68%), microwave time (36.73 min), and power (1665 W). The Z. limonella essential oil composition and its yield from EP-MAE was compared to those extracted from MAE and hydrodistillation. The optimal extraction conditions in the EP-MAE method enhanced significantly higher essential oil yield (7.89 ± 0.08 mg/g) compared to those found by MAE (7.26 ± 0.04 mg/g) and hydrodistillation (7.04 ± 0.03 mg/g), respectively. Fifty-one volatile components were identified among these methods, with similar major compounds of limonene, β-pinene, and α-phellandrene, showing percentage ranging between 34.59–35.78%, 19.91–22.67%, 8.47–8.75%, respectively. However, an extremely higher content of compounds was detected using the EP-MAE method. This study demonstrates the significance of EP-MAE, which may be applied as a more potent extraction method for essential oils in aromatic plants compared to MAE and hydrodistillation.