Reviews in Cardiovascular Medicine (May 2025)
Mechanistic Insights into Bioprosthetic Heart Valve Calcification and Anti-Calcification Strategies
Abstract
Prosthetic heart valves are crucial for treating valvular heart disease and serve as substitutes for native valves. Bioprosthetic heart valves (BHVs) are currently the most common type used in clinical practice. However, despite the long history of use, challenges remain in clinical applications, notably via valve calcification, which significantly affects longevity and quality. The mechanisms through which calcification occurs are complex and not yet completely understood. Therefore, this paper aims to provide a comprehensive review of developments in prosthetic valves, focusing on the calcification processes in bioprosthetic heart valves and the biological, chemical, and mechanical factors involved. In addition, we highlight various anti-calcification strategies currently applied to BHVs and assess whether anti-calcification approaches can prolong valve durability and improve patient prognosis. Finally, we describe the imaging methods presently used to monitor calcification clinically. Advances in nanotechnology and tissue engineering may provide better options for mitigating prosthetic heart valve calcification in the future.
Keywords