Frontiers in Zoology (Feb 2021)

Neuroendocrine patterns underlying seasonal song and year-round territoriality in male black redstarts

  • Camila P. Villavicencio,
  • Harriet Windley,
  • Pietro B. D’Amelio,
  • Manfred Gahr,
  • Wolfgang Goymann,
  • René Quispe

DOI
https://doi.org/10.1186/s12983-021-00389-x
Journal volume & issue
Vol. 18, no. 1
pp. 1 – 15

Abstract

Read online

Abstract Background The connection between testosterone and territoriality in free-living songbirds has been well studied in a reproductive context, but less so outside the breeding season. To assess the effects of seasonal androgenic action on territorial behavior, we analyzed vocal and non-vocal territorial behavior in response to simulated territorial intrusions (STIs) during three life-cycle stages in free-living male black redstarts: breeding, molt and nonbreeding. Concurrently, we measured changes in circulating testosterone levels, as well as the mRNA expression of androgen and estrogen receptors and aromatase in the preoptic, hypothalamic and song control brain areas that are associated with social and vocal behaviors. Results Territorial behavior and estrogen receptor expression in hypothalamic areas did not differ between stages. But plasma testosterone was higher during breeding than during the other stages, similar to androgen receptor and aromatase expression in the preoptic area. The expression of androgen receptors in the song control nucleus HVC was lower during molt when birds do not sing or sing rarely, but similar between the breeding and the nonbreeding stage. Nevertheless, some song spectral features and the song repertoire differed between breeding and nonbreeding. Territorial behavior and song rate correlated with the expression of steroid receptors in hypothalamic areas, and in the song control nucleus lMAN. Conclusions Our results demonstrate seasonal modulation of song, circulating testosterone levels, and brain sensitivity to androgens, but a year-round persistency of territorial behavior and estrogen receptor expression in all life-cycle stages. This suggests that seasonal variations in circulating testosterone concentrations and brain sensitivity to androgens is widely uncoupled from territorial behavior and song activity but might still affect song pattern. Our study contributes to the understanding of the complex comparative neuroendocrinology of song birds in the wild.

Keywords