Inorganics (Jul 2015)

Vanadium(V)-Substitution Reactions of Wells–Dawson-Type Polyoxometalates: From [X2M18O62]6− (X = P, As; M = Mo, W) to [X2VM17O62]7−

  • Tadaharu Ueda,
  • Yuriko Nishimoto,
  • Rie Saito,
  • Miho Ohnishi,
  • Jun-ichi Nambu

DOI
https://doi.org/10.3390/inorganics3030355
Journal volume & issue
Vol. 3, no. 3
pp. 355 – 369

Abstract

Read online

The formation processes of V(V)-substituted polyoxometalates with the Wells–Dawson-type structure were studied by cyclic voltammetry and by 31P NMR and Raman spectroscopy. Generally, the vanadium-substituted heteropolytungstates, [P2VW17O62]7− and [As2VW17O62]7−, were prepared by mixing equimolar amounts of the corresponding lacunary species—[P2W17O61]10− and [As2W17O61]10−—and vanadate. According to the results of various measurements in the present study, the tungsten site in the framework of [P2W18O62]6− and [As2W18O62]6− without defect sites could be substituted with V(V) to form the [P2VW17O62]7− and [As2VW17O62]7−, respectively. The order in which the reagents were mixed was observed to be the key factor for the formation of Dawson-type V(V)-substituted polyoxometalates. Even when the concentration of each reagent was identical, the final products differed depending on the order of their addition to the reaction mixture. Unlike Wells–Dawson-type heteropolytungstates, the molybdenum sites in the framework of [P2Mo18O62]6− and [As2Mo18O62]6− were substituted with V(V), but formed Keggin-type [PVMo11O40]4− and [AsVMo11O40]4− instead of [P2VMo17O62]7− and [As2VMo17O62]7−, respectively, even though a variety of reaction conditions were used. The formation constant of the [PVMo11O40]4− and [AsVMo11O40]4− was hypothesized to be substantially greater than that of the [P2VMo17O62]7− and [As2VMo17O62]7−.

Keywords