Materials (Mar 2023)

The Ionization of Polymeric Materials Accelerates Protein Deposition on Hydrogel Contact Lens Material

  • Jihye Ahn,
  • Moonsung Choi

DOI
https://doi.org/10.3390/ma16052119
Journal volume & issue
Vol. 16, no. 5
p. 2119

Abstract

Read online

Contact lens materials include polymers that are ionized in the ocular pH condition and are susceptible to protein deposition due to their surface characteristics. Herein, we investigated the effect of the electrostatic state of the contact lens material and protein on protein deposition level using hen egg white lysozyme (HEWL) and bovine serum albumin (BSA) as model proteins and etafilcon A and hilafilcon B as model contact lens materials. Only HEWL deposition on etafilcon A showed a statistically significant pH-dependency (p p < 0.05), implying that its surface charge became more negative under basic conditions. This pH-dependency of etafilcon A is attributed to the pH-responsive degree of ionization of its constituent methacrylic acid (MAA). The presence of MAA and its degree of ionization could accelerate protein deposition; more HEWL deposited as pH increased despite the weak positive surface charge of HEWL. The highly negatively charged etafilcon A surface attracted HEWL, even overwhelming weak positive charge of HEWL, increasing the deposition with pH.

Keywords