Agricultural Water Management (Nov 2023)
Exploring deficit irrigation as a water conservation strategy: Insights from field experiments and model simulation
Abstract
Deficit irrigation has emerged as a viable approach to increase agricultural water productivity. The objectives of this study were to 1) develop water conservation strategies by investigating responses of green bean (Phaseolus vulgaris) and sweet corn (Zea mays var. saccharata) to four irrigation treatments and 2) evaluate the performance of the Decision Support System for Agrotechnology Transfer (DSSAT) model in simulating growth and yield responses of green bean and sweet corn under four irrigation treatments. A field experiment was conducted using 32 experimental plots, established under a linear move sprinkler irrigation system equipped with variable rate irrigation (VRI) technology, at the Tropical Research and Education Center (TREC), Homestead for two cropping seasons between November and March in 2020–2021 and 2021–2022. The experiment involved four irrigation treatments: full irrigation (FI) (T4), and three levels of deficit irrigation, 75% FI (T3), 50% FI (T2), and 25% FI (T1) with four replications arranged in a completely randomized block design (RCBD) for each crop. The average soil moisture content of the full irrigation treatments was maintained above the management allowable depletion (MAD). Field data collection included various parameters of the crops including plant phenology, plant height, canopy width, fresh and dry biomass, and yield. Results confirmed that all three deficit irrigation treatments did not significantly affect the yield and yield components of the two crops during both seasons compared to the T4. This finding revealed that the highest crop water productivity was achieved from T1, 38.3 and 41.4 kg m−3 for green bean and 54 and 53 kg m−3 for sweet corn during the 2020–2021 and 2021–2022 seasons and up to 75% irrigation water saving could be achieved without affecting plant growth and yield. The DSSAT model performed well in simulating yield and yield components for the two crops in response to the four irrigation treatments. Model evaluation results showed that the minimum mean absolute error (MAE) for green bean fresh pod yield simulation was 2.1 Mg ha−1 with an index of agreement (d-Stat) of 0.6, while for biomass, it was 0.24 Mg ha−1 with a d-Stat of 1. Similarly, for sweet corn, the model simulated fresh cob yield with a minimum MAE of 6.51 Mg ha−1 and d-Stat of 0.9 and biomass with MAE of 1.63 Mg ha−1 and d-Stat of 0.9. Overall, implementing deficit irrigation in green bean and sweet corn fields could result in considerable water savings while achieving acceptable crop yield. The DSSAT model could be also a useful tool to simulate green bean and sweet corn responses to different irrigation scenarios and aid water management decisions under South Florida conditions.