Catalysts (Feb 2021)

Comparison of Advanced Oxidation Processes for the Degradation of Maprotiline in Water—Kinetics, Degradation Products and Potential Ecotoxicity

  • Nuno P. F Gonçalves,
  • Zsuzsanna Varga,
  • Edith Nicol,
  • Paola Calza,
  • Stéphane Bouchonnet

DOI
https://doi.org/10.3390/catal11020240
Journal volume & issue
Vol. 11, no. 2
p. 240

Abstract

Read online

The impact of different oxidation processes on the maprotiline degradation pathways was investigated by liquid chromatography-high resolution mass spectrometry (LC/HRMS) experiments. The in-house SPIX software was used to process HRMS data allowing to ensure the potential singular species formed. Semiconductors photocatalysts, namely Fe-ZnO, Ce-ZnO and TiO2, proved to be more efficient than heterogeneous photo-Fenton processes in the presence of hydrogen peroxide and persulfate. No significant differences were observed in the degradation pathways in the presence of photocatalysis, while the SO4− mediated process promote the formation of different transformation products (TPs). Species resulting from ring-openings were observed with higher persistence in the presence of SO4−. In-silico tests on mutagenicity, developmental/reproductive toxicity, Fathead minnow LC50, D. magna LC50, fish acute LC50 were carried out to estimate the toxicity of the identified transformation products. Low toxicant properties were estimated for TPs resulting from hydroxylation onto bridge rather than onto aromatic rings, as well as those resulting from the ring-opening.

Keywords