Cells (Apr 2023)
Prolonged Primary Rhinovirus Infection of Human Nasal Epithelial Cells Diminishes the Viral Load of Secondary Influenza H3N2 Infection via the Antiviral State Mediated by RIG-I and Interferon-Stimulated Genes
Abstract
Our previous study revealed that prolonged human rhinovirus (HRV) infection rapidly induces antiviral interferons (IFNs) and chemokines during the acute stage of infection. It also showed that expression levels of RIG-I and interferon-stimulated genes (ISGs) were sustained in tandem with the persistent expression of HRV RNA and HRV proteins at the late stage of the 14-day infection period. Some studies have explored the protective effects of initial acute HRV infection on secondary influenza A virus (IAV) infection. However, the susceptibility of human nasal epithelial cells (hNECs) to re-infection by the same HRV serotype, and to secondary IAV infection following prolonged primary HRV infection, has not been studied in detail. Therefore, the aim of this study was to investigate the effects and underlying mechanisms of HRV persistence on the susceptibility of hNECs against HRV re-infection and secondary IAV infection. We analyzed the viral replication and innate immune responses of hNECs infected with the same HRV serotype A16 and IAV H3N2 at 14 days after initial HRV-A16 infection. Prolonged primary HRV infection significantly diminished the IAV load of secondary H3N2 infection, but not the HRV load of HRV-A16 re-infection. The reduced IAV load of secondary H3N2 infection may be explained by increased baseline expression levels of RIG-I and ISGs, specifically MX1 and IFITM1, which are induced by prolonged primary HRV infection. As is congruent with this finding, in those cells that received early and multi-dose pre-treatment with Rupintrivir (HRV 3C protease inhibitor) prior to secondary IAV infection, the reduction in IAV load was abolished compared to the group without pre-treatment with Rupintrivir. In conclusion, the antiviral state induced from prolonged primary HRV infection mediated by RIG-I and ISGs (including MX1 and IFITM1) can confer a protective innate immune defense mechanism against secondary influenza infection.
Keywords