Data-Centric Engineering (Jan 2024)
FSBrick: an information model for representing fault-symptom relationships in heating, ventilation, and air conditioning systems
Abstract
Current fault diagnosis (FD) methods for heating, ventilation, and air conditioning (HVAC) systems do not accommodate for system reconfigurations throughout the systems’ lifetime. However, system reconfiguration can change the causal relationship between faults and symptoms, which leads to a drop in FD accuracy. In this paper, we present Fault-Symptom Brick (FSBrick), an extension to the Brick metadata schema intended to represent information necessary to propagate system configuration changes onto FD algorithms, and ultimately revise FSRs. We motivate the need to represent FSRs by illustrating their changes when the system reconfigures. Then, we survey FD methods’ representation needs and compare them against existing information modeling efforts within and outside of the HVAC sector. We introduce the FSBrick architecture and discuss which extensions are added to represent FSRs. To evaluate the coverage of FSBrick, we implement FSBrick on (i) the motivational case study scenario, (ii) Building Automation Systems’ representation of FSRs from 3 HVACs, and (iii) FSRs from 12 FD method papers, and find that FSBrick can represent 88.2% of fault behaviors, 92.8% of fault severities, 67.9% of symptoms, and 100% of grouped symptoms, FSRs, and probabilities associated with FSRs. The analyses show that both Brick and FSBrick should be expanded further to cover HVAC component information and mathematical and logical statements to formulate FSRs in real life. As there is currently no generic and extensible information model to represent FSRs in commercial buildings, FSBrick paves the way to future extensions that would aid the automated revision of FSRs upon system reconfiguration.
Keywords