Metals (Apr 2021)

Innovative Densification Process of a Fe-Cr-C Powder Metallurgy Steel

  • Federico Simone Gobber,
  • Jana Bidulská,
  • Alessandro Fais,
  • Róbert Bidulský,
  • Marco Actis Grande

DOI
https://doi.org/10.3390/met11040665
Journal volume & issue
Vol. 11, no. 4
p. 665

Abstract

Read online

In this study, the efficacy of an innovative ultra-fast sintering technique called electro-sinter-forging (ESF) was evaluated in the densification of Fe-Cr-C steel. Although ESF proved to be effective in densifying several different metallic materials and composites, it has not yet been applied to powder metallurgy Fe-Cr-C steels. Pre-alloyed Astaloy CrM powders have been ad-mixed with either graphite or graphene and then processed by ESF. By properly tuning the process parameters, final densities higher than 99% were obtained. Mechanical properties such as hardness and transverse rupture strength (TRS) were tested on samples produced by employing different process parameters and then submitted to different post-treatments (machining, heat treatment). A final transverse rupture strength up to 1340 ± 147 MPa was achieved after heat treatment, corresponding to a hardness of 852 ± 41 HV. The experimental characterization highlighted that porosity is the main factor affecting the samples’ mechanical resistance, correlating linearly with the transverse rupture strength. Conversely, it is not possible to establish a similar interdependency between hardness and mechanical resistance, since porosity has a higher effect on the final properties.

Keywords