Applied Sciences (Nov 2024)

Single-Task Joint Learning Model for an Online Multi-Object Tracking Framework

  • Yuan-Kai Wang,
  • Tung-Ming Pan,
  • Chi-En Hu

DOI
https://doi.org/10.3390/app142210540
Journal volume & issue
Vol. 14, no. 22
p. 10540

Abstract

Read online

Multi-object tracking faces critical challenges, including occlusions, ID switches, and erroneous detection boxes, which significantly hinder tracking accuracy in complex environments. To address these issues, this study proposes a single-task joint learning (STJL) model integrated into an online multi-object tracking framework to enhance feature extraction and model robustness across diverse scenarios. Employing cross-dataset training, the model has improved generalization capabilities and can effectively handle various tracking conditions. A key innovation is the refined tracker initialization strategy that combines detection and tracklet confidence, which significantly reduces the number of false positives and ID switches. Additionally, the framework employs a combination of Mahalanobis and cosine distances to optimize data association, further improving tracking accuracy. The experimental results demonstrate that the proposed model outperformed state-of-the-art methods on standard benchmark datasets, achieving superior MOTA and reduced ID switches, confirming its effectiveness in dynamic and occlusion-heavy environments.

Keywords