MATEC Web of Conferences (Jan 2023)
Bond behaviour evaluation between steel reinforcement and self-healing concrete containing non-axenic biomasses
Abstract
Although steel reinforcements are used to withstand tensile forces in concrete, cracks are an unavoidable phenomenon. The presence of cracks, in fact, increases the risk for lowering the service life and durability of concrete structures. A critical issue occurs when due to splitting forces, cracks appear in concrete along the tensioned rebars which damage the bonding between the steel and concrete matrix. As a mitigation plan, the cracks should be healed at short notice and the bonding has to be recovered by the potential use of healing agents. This paper aims to investigate the bond behaviour of steel reinforcement in self-healing concrete. Two biomasses were employed as healing agents namely HTN (bacteria-based) and YEAST (fungi-based). The fresh and hardened properties of the normal and self-healing concretes were initially evaluated. The bond properties were investigated by performing pull-out tests on three different states of concrete: uncracked, cracked, and healed. Results revealed that the additions of biomasses did not induce negative effects on the compressive strength of hardened concrete. Moreover, the average bond strength of uncracked concretes containing HTN and YEAST improved by 20% and 8%, respectively, as compared with normal concrete. The introduction of a crack caused a significant reduction in bond strength regardless of the addition of healing agents. Nevertheless, it was found that the bond strength was slightly recovered after healing under water immersion.