BMC Medical Informatics and Decision Making (Nov 2021)
Interpretable time-aware and co-occurrence-aware network for medical prediction
Abstract
Abstract Background Disease prediction based on electronic health records (EHRs) is essential for personalized healthcare. But it’s hard due to the special data structure and the interpretability requirement of methods. The structure of EHR is hierarchical: each patient has a sequence of admissions, and each admission has some co-occurrence diagnoses. However, the existing methods only partially model these characteristics and lack the interpretation for non-specialists. Methods This work proposes a time-aware and co-occurrence-aware deep learning network (TCoN), which is not only suitable for EHR data structure but also interpretable: the co-occurrence-aware self-attention (CS-attention) mechanism and time-aware gated recurrent unit (T-GRU) can model multilevel relations; the interpretation path and the diagnosis graph can make the result interpretable. Results The method is tested on a real-world dataset for mortality prediction, readmission prediction, disease prediction, and next diagnoses prediction. Experimental results show that TCoN is better than baselines with 2.01% higher accuracy. Meanwhile, the method can give the interpretation of causal relationships and the diagnosis graph of each patient. Conclusions This work proposes a novel model—TCoN. It is an interpretable and effective deep learning method, that can model the hierarchical medical structure and predict medical events. The experiments show that it outperforms all state-of-the-art methods. Future work can apply the graph embedding technology based on more knowledge data such as doctor notes.
Keywords