Global Challenges (Feb 2023)

Photovoltaic Materials and Their Path toward Cleaner Energy

  • Aleksandar M. Mitrašinović,
  • Milinko Radosavljević

DOI
https://doi.org/10.1002/gch2.202200146
Journal volume & issue
Vol. 7, no. 2
pp. n/a – n/a

Abstract

Read online

Abstract Photovoltaic silicon converts sunlight in 95% of the operational commercial solar cells and has the potential to become a leading material in harvesting energy from renewable sources, but silicon can hardly convert clean energy due to technologies required for its reduction from sand and further purification. The implementation of the novel materials into photovoltaic systems depends on their conversion efficiency limited by the material's inherent properties, longevity dependent on internal stability, and ease of manufacturing process. A major challenge is discovering a multilayered set of different photovoltaic materials capable of converting clean energy from a wider spectra range since emerging materials and technologies such as dye‐sensitized and quantum dots suffer from low conversion efficiencies while perovskite and organic cells have short longevity in atmospheric conditions. Presently, improving technologies for commercialized materials and creating multijunction solar cells enhanced by new photovoltaic materials is a path toward cleaner energies. With the rapid development of the integrative technologies and challenges that photovoltaics for clean energy conversion are facing, the entire clean photovoltaic industry could arise by bottom‐up course as a part of integrative technologies rather than erecting large power plants.

Keywords