Unraveling bulk and grain boundary electrical properties in La0.8Sr0.2Mn1−yO3±δ thin films
Francesco Chiabrera,
Iñigo Garbayo,
Dolors Pla,
Mónica Burriel,
Fabrice Wilhelm,
Andrei Rogalev,
Marc Núñez,
Alex Morata,
Albert Tarancón
Affiliations
Francesco Chiabrera
Department of Advanced Materials for Energy, Catalonia Institute for Energy Research (IREC), Jardí de les Dones de Negre 1, Planta 2, 08930 Sant Adrià de Besòs, Barcelona, Spain
Iñigo Garbayo
Department of Advanced Materials for Energy, Catalonia Institute for Energy Research (IREC), Jardí de les Dones de Negre 1, Planta 2, 08930 Sant Adrià de Besòs, Barcelona, Spain
Dolors Pla
Univ. Grenoble Alpes, CNRS, Grenoble INP (Institute of Engineering Univ. Grenoble Alpes), LMGP, F-38000 Grenoble, France
Mónica Burriel
Univ. Grenoble Alpes, CNRS, Grenoble INP (Institute of Engineering Univ. Grenoble Alpes), LMGP, F-38000 Grenoble, France
Fabrice Wilhelm
European Synchrotron Radiation Facility (ESRF), F-38054 Grenoble, France
Andrei Rogalev
European Synchrotron Radiation Facility (ESRF), F-38054 Grenoble, France
Marc Núñez
Department of Advanced Materials for Energy, Catalonia Institute for Energy Research (IREC), Jardí de les Dones de Negre 1, Planta 2, 08930 Sant Adrià de Besòs, Barcelona, Spain
Alex Morata
Department of Advanced Materials for Energy, Catalonia Institute for Energy Research (IREC), Jardí de les Dones de Negre 1, Planta 2, 08930 Sant Adrià de Besòs, Barcelona, Spain
Albert Tarancón
Department of Advanced Materials for Energy, Catalonia Institute for Energy Research (IREC), Jardí de les Dones de Negre 1, Planta 2, 08930 Sant Adrià de Besòs, Barcelona, Spain
Grain boundaries in Sr-doped LaMnO3±δ thin films have been shown to strongly influence the electronic and oxygen mass transport properties, being able to profoundly modify the nature of the material. The unique behavior of the grain boundaries can be correlated with substantial modifications of the cation concentration at the interfaces, which can be tuned by changing the overall cationic ratio in the films. In this work, we study the electronic properties of La0.8Sr0.2Mn1−yO3±δ thin films with variable Mn content. The influence of the cationic composition on the grain boundary and grain bulk electronic properties is elucidated by studying the manganese valence state evolution using spectroscopy techniques and by confronting the electronic properties of epitaxial and polycrystalline films. Substantial differences in the electronic conduction mechanism are found in the presence of grain boundaries and depending on the manganese content. Moreover, the unique defect chemistry of the nanomaterial is elucidated by measuring the electrical resistance of the thin films as a function of oxygen partial pressure, disclosing the importance of the cationic local non-stoichiometry on the thin film behavior.