Renal Replacement Therapy (Aug 2022)

In vitro evaluation of antibacterial nanomaterial-induced anaphylactoid reaction for indwelling catheters

  • Koji Umeda,
  • Masaji Tachikawa,
  • Yoshinao Azuma,
  • Tsutomu Furuzono

DOI
https://doi.org/10.1186/s41100-022-00424-5
Journal volume & issue
Vol. 8, no. 1
pp. 1 – 5

Abstract

Read online

Abstract Background To prevent tunnel infection of indwelling catheters, impregnation with antiseptics or antibiotics is effective. However, 13 patients using chlorhexidine–silver sulfadiazine-impregnated catheters experienced serious anaphylactic shock in Japan. Thus, it is necessary to select a suitable evaluation method for allergic reactions and develop a novel antibacterial coating material that does not cause anaphylactic reaction. Methods Two types of highly dispersible and antibacterial nanoparticles—fluorine (F)-doped hydroxyapatite (HAp) and zinc (Zn)-doped HAp—were tested using of the system and compared with compound 48/80 (c48/80) as a histamine releaser and chlorhexidine gluconate (CHG) as an anaphylactic inducer. Results The histamine concentrations secreted from HMC-1 cells remained mostly the same even with the addition of F-HAp and Zn-HAp. On the contrary, the levels of the chemical mediators from the cells by the addition of F-HAp and Zn-HAp were significantly lower than those of only c48/80 and CHG without the addition of HAp. Conclusions The assay was a well-evaluated method for quantifying histamine concentrations released from HMC-1 cells. Our study induced HMC-1 cells accompanied with and without the nanomaterials; the potential of F-HAp and Zn-HAp to induce allergic reactions was found to be quite low. Therefore, the antibacterial nanomaterials are expected to hardly induce anaphylactoid reactions.

Keywords