Energies (May 2022)
Investigation on the Fracture-Pore Evolution and Percolation Characteristics of Oil Shale under Different Temperatures
Abstract
It is well known that underground in situ pyrolysis technology for oil shale production is a promising field. In the in situ modification mining process, the permeability property of a shale matrix has a great effect on the transport capacity of pyrolytic products. For oil shale undergoing pyrolysis, the changes of internal structure (fracture and pore space) have a considerable influence on the permeability network which further affects the migration of hydrocarbon products. In this study, based on an oil shale retorting experiment performed under different temperatures (20 °C, 100 °C, 200 °C, 300 °C, 325 °C, 350 °C, 375 °C, 400 °C, 425 °C, 450 °C, 475 °C, 500 °C, 525 °C, 550 °C, 575 °C, 600 °C), an investigation on the distribution characteristics of the fractures was conducted using micro-CT technology. Meanwhile, mercury injection porosimetry was used to characterize the pore structure of the oil shale samples under different temperatures. Finally, a fracture-pore dual medium model was constructed to calculate the percolation probability to quantitatively describe the permeability variation of oil shale with temperature. The test results indicated that the higher the temperature, the larger were the pore spaces. The increase in pore volume due to pyrolysis temperatures mainly affected the pores ranging from 10 nm to 100 nm and occurred in the specific temperature range (400 °C to 425 °C). Additionally, CT images show that the fracture morphology varied with increasing temperature and the number and length of fractures at different temperatures were in great accordance with the fractal law statistically. On the other hand, simulation of the percolation probabilities discovered that in a single pore media model over the whole range of tested temperatures they were too low to exceed the threshold. In contrast, in the dual medium model, the theoretical threshold of 31.16% was exceeded when the temperature reached 350 °C. Moreover, the results demonstrated that fractures dominated the seepage channel and had more significant effects on the permeability of oil shale. What has been done in this study will provide some guidance for the in situ fluidization mining of oil shale.
Keywords