Universita Ciencia (Aug 2022)
Resumen de clasificadores rápidos basados en el algoritmo del vecino más cercano
Abstract
Actualmente, en diferentes ciencias como la medicina, las geociencias, la astronomía, entre otras, la tarea de clasificación supervisada ha dado solución a muchos problemas importantes. Uno de los algoritmos de clasificación supervisada más utilizados ha sido k vecinos más cercanos (o k Neares Neighbors, k-NN), el cual ha mostrado ser un algoritmo simple, pero efectivo. El algoritmo k vecinos más cercanos realiza una comparación exhaustiva entre el nuevo objeto a clasificar y todos los elementos del conjunto de entrenamiento. Sin embargo, cuando el conjunto de entrenamiento es grande, este proceso es costoso y en algunos casos esta búsqueda exhaustiva se vuelve un proceso muy lento o inaplicable. Para agilizar el proceso de clasificación y omitir comparaciones, se han propuesto en los últimos años clasificadores rápidos basados en el algoritmo del vecino más cercano (Fast k-NN). La mayoría de estos algoritmos Fast k-NN se basan en las propiedades métricas de la función de distancia para omitir comparaciones o bien otras heurísticas.
Keywords