Impact of gallstone disease on the risk of stroke and coronary artery disease: evidence from prospective observational studies and genetic analyses
Li Zhang,
Wenqiang Zhang,
Lin He,
Huijie Cui,
Yutong Wang,
Xueyao Wu,
Xunying Zhao,
Peijing Yan,
Chao Yang,
Changfeng Xiao,
Mingshuang Tang,
Lin Chen,
Chenghan Xiao,
Yanqiu Zou,
Yunjie Liu,
Yanfang Yang,
Ling Zhang,
Yuqin Yao,
Jiayuan Li,
Zhenmi Liu,
Chunxia Yang,
Xia Jiang,
Ben Zhang
Affiliations
Li Zhang
Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University
Wenqiang Zhang
Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University
Lin He
Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University
Huijie Cui
Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University
Yutong Wang
Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University
Xueyao Wu
Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University
Xunying Zhao
Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University
Peijing Yan
Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University
Chao Yang
Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University
Changfeng Xiao
Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University
Mingshuang Tang
Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University
Lin Chen
Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University
Chenghan Xiao
Department of Maternal, Child and Adolescent Health, West China School of Public Health and West China Fourth Hospital, Sichuan University
Yanqiu Zou
Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University
Yunjie Liu
Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University
Yanfang Yang
Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University
Ling Zhang
Department of Iatrical Polymer Material and Artificial Apparatus, School of Polymer Science and Engineering, Sichuan University
Yuqin Yao
Department of Occupational and Environmental Health, West China School of Public Health and West China Fourth Hospital, Sichuan University
Jiayuan Li
Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University
Zhenmi Liu
Department of Maternal, Child and Adolescent Health, West China School of Public Health and West China Fourth Hospital, Sichuan University
Chunxia Yang
Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University
Xia Jiang
Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University
Ben Zhang
Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University
Abstract Background Despite epidemiological evidence associating gallstone disease (GSD) with cardiovascular disease (CVD), a dilemma remains on the role of cholecystectomy in modifying the risk of CVD. We aimed to characterize the phenotypic and genetic relationships between GSD and two CVD events – stroke and coronary artery disease (CAD). Methods We first performed a meta-analysis of cohort studies to quantify an overall phenotypic association between GSD and CVD. We then investigated the genetic relationship leveraging the largest genome-wide genetic summary statistics. We finally examined the phenotypic association using the comprehensive data from UK Biobank (UKB). Results An overall significant effect of GSD on CVD was found in meta-analysis (relative risk [RR] = 1.26, 95% confidence interval [CI] = 1.19–1.34). Genetically, a positive shared genetic basis was observed for GSD with stroke ( $${r}_{g}$$ r g =0.16, P = 6.00 × 10–4) and CAD ( $${r}_{g}$$ r g =0.27, P = 2.27 × 10–15), corroborated by local signals. The shared genetic architecture was largely explained by the multiple pleiotropic loci identified in cross-phenotype association study and the shared gene-tissue pairs detected by transcriptome-wide association study, but not a causal relationship (GSD to CVD) examined through Mendelian randomization (MR) (GSD-stroke: odds ratio [OR] = 1.00, 95%CI = 0.97–1.03; GSD-CAD: OR = 1.01, 95%CI = 0.98–1.04). After a careful adjustment of confounders or considering lag time using UKB data, no significant phenotypic effect of GSD on CVD was detected (GSD-stroke: hazard ratio [HR] = 0.95, 95%CI = 0.83–1.09; GSD-CAD: HR = 0.98, 95%CI = 0.91–1.06), further supporting MR findings. Conclusions Our work demonstrates a phenotypic and genetic relationship between GSD and CVD, highlighting a shared biological mechanism rather than a direct causal effect. These findings may provide insight into clinical and public health applications.