Медицинский совет (May 2022)

Evaluation of the antibacterial activity of the preparation benzydamine hydrochloride

  • E. V. Detusheva,
  • N. K. Fursova,
  • I. V. Kukes

DOI
https://doi.org/10.21518/2079-701X-2022-16-8-49-55
Journal volume & issue
Vol. 0, no. 8
pp. 49 – 55

Abstract

Read online

Introduction. With an increase in the level of acquired antibiotic resistance of pathogens, treatment becomes more complicated and slows down, especially in infections associated with biofilms. There is a growing need for the development and use of new antibacterial drugs with specific antimicrobial activity.Aim. To study the antimicrobial action and the dynamics of the formation of resistance to benzydamine hydrochloride from a various infection agents. Materials and methods. To obtain biofilms, microorganisms were cultivated in flat-bottomed culture plates. Planktonic cells were obtained by suspending and reseeding single colonies of the daily culture into flat-bottomed culture plates. To determine the antimicrobial activity of the studied preparations, two-fold dilutions were prepared and added to the wells of the plate with a bacterial culture. The dynamics of the formation of resistance to benzydamine hydrochloride was studied by passaging the cultures in a liquid nutrient medium with increasing concentrations of the antiseptic by a twofold step. After 2–3 days of incubation from a test tube with the maximum concentration of the drug, in which bacterial growth was observed, the bacteria were transferred to new ones with higher concentrations of the drug.Results. It was shown that benzydamine hydrochloride showed a high level of activity against bacteria M. catarrhalis and yeast-like fungi C. albicans. A slightly lower activity of the drug was noted for bacteria of the species S. aureus and E. coli, however, within the limits of the therapeutic concentration of the drug in finished dosage forms. Benzydamine hydrochloride had a significantly higher level of antibacterial activity against pre-formed biofilms compared to drugs such as chlorhexidine and hexetidine. An analysis of the dynamics of the formation of resistance to the drug benzydamine hydrochloride in microorganisms of various species showed that the possibility of developing resistance to benzydamine hydrochloride is extremely small. The process of adaptation was observed only in E. coli. The studied strains of the species S. aureus, C. albicans, and M. catarrhalis did not acquire resistance to the test drug.Conclusion. Benzydamine hydrochloride can be effectively used against a wide range of pathogens of ENT infections, as it has been shown to have a significantly higher level of antibacterial activity against pre-formed biofilms, various types of bacteria and yeast-like fungi and an extremely low level of resistance compared to other antiseptic drugs.

Keywords