International Journal of Nanomedicine (Apr 2010)

Gold nanoparticle–choline complexes can block nicotinic acetylcholine receptors

  • Chur Chin,
  • In Kyeom Kim,
  • Dong Yoon Lim,
  • et al

Journal volume & issue
Vol. 2010, no. default
pp. 315 – 321

Abstract

Read online

Chur Chin1, In Kyeom Kim2, Dong Yoon Lim3, Ki Suk Kim4, Hyang Ae Lee4, Eun Joo Kim41Department of Pediatrics, Fatima Hospital, Daegu, Korea; 2Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Korea; 3Department of Pharmacology, School of Medicine, Chosun University, Gwangju, Korea; 4Korea Institute of Toxicology, Daejeon, KoreaAbstract: We identified a novel class of direct ion-channel blockers of ligand-gated ion channels called the gold nanoparticle–choline complex. Negatively charged gold nanoparticles (1.4 nm) block ion pores by binding to the sulfur group of the cysteine loop of nicotinic acetylcholine receptors (nAChRs), and currents evoked by acetylcholine (Ach) can break these bonds. The current evoked by ACh in nAChRs was blocked directly in ion pores by the gold nanoparticle–choline complex. In adrenal-gland perfusion studies, the complex also blocked nAChRs by diminishing catecholamine release by about 75%. An in vivo study showed muscle relaxation in rats after injection of the complex. These results will foster the application of gold nanoparticles as a direct ion-channel blocker. Keywords: negatively charged gold nanoparticle, choline, gold–sulfur bond, nicotinic acetylcholine receptor, direct ion-channel blocker