Insects (May 2021)

The First Mitogenomes of the Subfamily Odontiinae (Lepidoptera, Crambidae) and Phylogenetic Analysis of Pyraloidea

  • Mujie Qi,
  • Huifeng Zhao,
  • Fang Yu,
  • Aibing Zhang,
  • Houhun Li

DOI
https://doi.org/10.3390/insects12060486
Journal volume & issue
Vol. 12, no. 6
p. 486

Abstract

Read online

The complete mitochondrial genomes of three species of Odontiinae were newly sequenced: Dausara latiterminalis Yoshiyasu, Heortia vitessoides (Moore), and Pseudonoorda nigropunctalis (Hampson). These circular and double-stranded mitogenomes vary from 15,084 bp to 15,237 bp in size, including 13 protein-coding genes (PCGs), two ribosomal RNA genes (rRNAs), and 22 transfer RNA genes (tRNAs) and an A + T-rich region. The nucleotide composition indicated a strong A/T bias. Most PCGs are initiated with an ATN codon and terminated by a codon of TAR. All tRNAs could be folded into the clover-leaf structure with the exception of trnS1 (AGN), in which the dihydrouridine (DHU) arm formed a simple loop, and the motif ‘ATAG’ and ‘ATTTA’ in the A + T-rich region was also founded. The phylogenomic analyses covering Odontiinae + 11 subfamilies of Pyraloidea were conducted. Similar topologies were generated from both Bayesian inference (BI) and maximum likelihood (ML) analyses based on the nucleotide and amino acid sequence data. There was some discrepancy in the sister-group relationship of Odontiinae and Glaphyriinae, and the relationships among the subfamilies in the ‘CAMMSS clade’ of the Crambidae. The results of this study suggest that mitogenomic data are useful for resolving the deep-level relationships of Pyraloidea and the topologies generated from amino acid data might be more realistic and reliable. Moreover, more mitogenomic taxon sampling and larger scale analyses with more genes or a combination of mitogenomic and nuclear genes are needed to reconstruct a comprehensive framework of the pyraloid phylogeny.

Keywords