Scientific Reports (Oct 2024)
Green synthesis of novel Z-scheme SnS2/HAp nanocomposite using Ocimum tenuiflorum leaf extract and investigation of its photocatalytic activity
Abstract
Abstract The present study focuses on the green synthesis of a novel Z-scheme SnS₂/HAp photocatalyst using Ocimum tenuiflorum (tulsi) leaf extract as a stabilizing agent. This approach not only emphasizes sustainability but also adds value to waste by extracting hydroxyapatite (HAp) from Labeo rohita fish scales, addressing the challenge of their disposal. The synthesized photocatalyst was thoroughly characterized using a range of analytical techniques to evaluate its crystal structure, optical properties, morphology, and elemental composition. The photocatalytic activity of the SnS₂/HAp composite was assessed through the degradation of gentian violet (GV) dye, a representative organic pollutant. Various reaction parameters were optimized to enhance the degradation efficiency, and the photocatalyst’s performance was further tested across different water matrices. Under optimal conditions, the SnS₂/HAp photocatalyst achieved a maximum photodegradation efficiency of 97.49% with a rate constant of 0.0494 min− 1 for GV dye. Additionally, it exhibited an efficiency greater than 70% against other emerging pollutants via advanced oxidation processes (AOP). The enhanced photocatalytic activity was attributed to the formation of a Z-Scheme heterojunction between SnS2 and HAp, which enhanced the charge separation efficiency and delayed the charge recombination. The study also demonstrated the photocatalyst’s remarkable reusability, maintaining high performance over five cycles and across various water environments. This highlights its potential as a sustainable solution for the removal of organic pollutants from aqueous streams. Finally, a Z-scheme electron transport mechanism is proposed to explain the photodegradation process of GV dye using the SnS₂/HAp photocatalyst.
Keywords