Engineering Applications of Computational Fluid Mechanics (Jan 2020)

Machine learning versus linear regression modelling approach for accurate ozone concentrations prediction

  • Ellysia Jumin,
  • Nuratiah Zaini,
  • Ali Najah Ahmed,
  • Samsuri Abdullah,
  • Marzuki Ismail,
  • Mohsen Sherif,
  • Ahmed Sefelnasr,
  • Ahmed El-Shafie

DOI
https://doi.org/10.1080/19942060.2020.1758792
Journal volume & issue
Vol. 14, no. 1
pp. 713 – 725

Abstract

Read online

High level of tropospheric ozone concentration, exceeding allowable level has been frequently reported in Malaysia. This study proposes accurate model based on Machine Learning algorithms to predict Tropospheric ozone concentration in major cities located in Kuala Lumpur and Selangor, Malaysia. The proposed models were developed using three-year of historical data for different parameters as input to predict 24-hour and 12-hour of tropospheric ozone concentration. Different Machine Learning algorithms have been investigated, viz. Linear Regression, Neural Network and Boosted Decision Tree. The results revealed that wind speed, humidity, Nitrogen Oxide, Carbon Monoxide and Nitrogen Dioxide have significant influence on ozone formation. Boosted Decision Tree outperformed Linear regression and Neural Network algorithms for all stations. The performance of the proposed model improved by using 12-hours dataset instead of the 24-hour where R2 values were equal to 0.91, 0.88 and 0.87 for the three investigated stations. To assess the uncertainties of the Boosted Decision Tree model, 95% prediction uncertainties (95PPU) d-factors were introduced.95PPU showed about 94.4, 93.4, 96.7% and the d-factors were 0.001015, 0.001016 and 0.001124 which relate to S1, S2 and S3, respectively. The obtained results provide a reliable prediction model to mimic actual ozone concentration in different locations in Malaysia.

Keywords