Physics Letters B (Nov 2020)

Rapidly rotating Δ-resonance-admixed hypernuclear compact stars

  • Jia Jie Li,
  • Armen Sedrakian,
  • Fridolin Weber

Journal volume & issue
Vol. 810
p. 135812

Abstract

Read online

We use a set of hadronic equations of state derived from covariant density functional theory to study the impact of their high-density behavior on the properties of rapidly rotating Δ-resonance-admixed hyperonic compact stars. In particular, we explore systematically the effects of variations of the bulk energy isoscalar skewness, Qsat, and the symmetry energy slope, Lsym, on the masses of rapidly rotating compact stars. With models for equation of state satisfying all the modern astrophysical constraints, excessively large gravitational masses of around 2.5M⊙ are only obtained under three conditions: (a) strongly attractive Δ-resonance potential in nuclear matter, (b) maximally fast (Keplerian) rotation, and (c) parameter ranges Qsat≳500 MeV and Lsym≲50 MeV. These values of Qsat and Lsym have a rather small overlap with a large sample (total of about 260) parametrizations of covariant nucleonic density functionals. The extreme nature of requirements (a)-(c) reinforces the theoretical expectation that the secondary object involved in the GW190814 event is likely to be a low-mass black hole rather than a supramassive neutron star.

Keywords