Cell Reports (Jan 2013)

γ-Secretase Modulators and Presenilin 1 Mutants Act Differently on Presenilin/γ-Secretase Function to Cleave Aβ42 and Aβ43

  • Masayasu Okochi,
  • Shinji Tagami,
  • Kanta Yanagida,
  • Mako Takami,
  • Takashi S. Kodama,
  • Kohji Mori,
  • Taisuke Nakayama,
  • Yasuo Ihara,
  • Masatoshi Takeda

DOI
https://doi.org/10.1016/j.celrep.2012.11.028
Journal volume & issue
Vol. 3, no. 1
pp. 42 – 51

Abstract

Read online

Deciphering the mechanism by which the relative Aβ42(43) to total Aβ ratio is regulated is central to understanding Alzheimer disease (AD) etiology; however, the mechanisms underlying changes in the Aβ42(43) ratio caused by familial mutations and γ-secretase modulators (GSMs) are unclear. Here, we show in vitro and in living cells that presenilin (PS)/γ-secretase cleaves Aβ42 into Aβ38, and Aβ43 into Aβ40 or Aβ38. Approximately 40% of Aβ38 is derived from Aβ43. Aβ42(43) cleavage is involved in the regulation of the Aβ42(43) ratio in living cells. GSMs increase the cleavage of PS/γ-secretase-bound Aβ42 (increase kcat) and slow its dissociation from the enzyme (decrease kb), whereas PS1 mutants and inverse GSMs show the opposite effects. Therefore, we suggest a concept to describe the Aβ42(43) production process and propose how GSMs act, and we suggest that a loss of PS/γ-secretase function to cleave Aβ42(43) may initiate AD and might represent a therapeutic target.