Mathematics (Jun 2019)
The Velocity of PCL Fluid in Human Lungs with Beaver and Joseph Boundary Condition by Using Asymptotic Expansion Method
Abstract
Humans breathe air into the respiratory system through the trachea, but with all the pollutants in our environment (both outside and inside), the air we breathe may not be clean. When that is so, the respiratory system secretes mucus to trap dirt that is inhaled through the nostrils. The respiratory tract contains hair-like structures in the epithelial tissue, called cilia: These wave back and forth to help expel particles of dust, dirt, mucus, and contaminants from the body. Cilia are found in this layer (a porous medium) and the fluid in this layer is called the periciliary layer (PCL). This study aims to determine the velocity of the PCL fluid flow in motile cilia. Usually, fluids move due to pressure changes, but in this study, the velocity of solids or of the cilia moves the PCL fluid. Stokes-Brinkman equations are used to determine the velocity of PCL fluid flow when cilia form an angle with the horizontal plane. The Beavers and Joseph boundary condition is applied in this study. The asymptotic expansion method is adapted in order to determine the velocity of PCL from the movement of the cilia.
Keywords