Applied Sciences (Dec 2022)
Anthropomorphic Grasping of Complex-Shaped Objects Using Imitation Learning
Abstract
This paper presents an autonomous grasping approach for complex-shaped objects using an anthropomorphic robotic hand. Although human-like robotic hands have a number of distinctive advantages, most of the current autonomous robotic pickup systems still use relatively simple gripper setups such as a two-finger gripper or even a suction gripper. The main difficulty of utilizing human-like robotic hands lies in the sheer complexity of the system; it is inherently tough to plan and control the motions of the high degree of freedom (DOF) system. Although data-driven approaches have been successfully used for motion planning of various robotic systems recently, it is hard to directly apply them to high-DOF systems due to the difficulty of acquiring training data. In this paper, we propose a novel approach for grasping complex-shaped objects using a high-DOF robotic manipulation system consisting of a seven-DOF manipulator and a four-fingered robotic hand with 16 DOFs. Human demonstration data are first acquired using a virtual reality controller with 6D pose tracking and individual capacitive finger sensors. Then, the 3D shape of the manipulation target object is reconstructed from multiple depth images recorded using the wrist-mounted RGBD camera. The grasping pose for the object is estimated using a residual neural network (ResNet), K-means clustering (KNN), and a point-set registration algorithm. Then, the manipulator moves to the grasping pose following the trajectory created by dynamic movement primitives (DMPs). Finally, the robot performs one of the object-specific grasping motions learned from human demonstration. The suggested system is evaluated by an official tester using five objects with promising results.
Keywords