Micromachines (Jan 2019)

A Novel Fabricating Process of Catalytic Gas Sensor Based on Droplet Generating Technology

  • Liqun Wu,
  • Ting Zhang,
  • Hongcheng Wang,
  • Chengxin Tang,
  • Linan Zhang

DOI
https://doi.org/10.3390/mi10010071
Journal volume & issue
Vol. 10, no. 1
p. 71

Abstract

Read online

Catalytic gas sensors are widely used for measuring concentrations of combustible gases to prevent explosive accidents in industrial and domestic environments. The typical structure of the sensitive element of the sensor consists of carrier and catalyst materials, which are in and around a platinum coil. However, the size of the platinum coil is micron-grade and typically has a cylindrical shape. It is extremely difficult to control the amount of carrier and catalyst materials and to fulfill the inner cavity of the coil, which adds to the irreproducibility and uncertainty of the sensor performance. To solve this problem, this paper presents a new method which uses a drop-on-demand droplet generator to add the carrier and catalytic materials into the platinum coil and fabricate the micropellistor. The materials in this article include finely dispersed Al2O3 suspension and platinum palladium (Pd-Pt) catalyst. The size of the micropellistor with carrier material can be controlled by the number of the suspension droplets, while the amount of Pd-Pt catalyst can be controlled by the number of catalyst droplets. A bridge circuit is used to obtain the output signal of the gas sensors. The original signals of the micropellistor at 140 mV and 80 mV remain after aging treatment. The sensitivity and power consumption of the pellistor are 32 mV/% CH4 and 120 mW, respectively.

Keywords