Energies (Apr 2024)

Ramping-Up Electro-Fuel Production

  • Ralf Peters,
  • Maximilian Decker,
  • Janos Lucian Breuer,
  • Remzi Can Samsun,
  • Detlef Stolten

DOI
https://doi.org/10.3390/en17081928
Journal volume & issue
Vol. 17, no. 8
p. 1928

Abstract

Read online

Future transport systems will rely on new electrified drives utilizing batteries and hydrogen-powered fuel cells or combustion engines with sustainable fuels. These systems must complement each other and should not be viewed as competing. Properties such as efficiency, range, as well as transport and storage properties will determine their use cases. This article looks at the usability of liquid electro-fuels in freight transport and analyzes the production capacities that will be necessary through 2050 in Germany. Different scenarios with varying market shares of electro-fuels are considered. A scenario with a focus on fuel cells foresees a quantity of 220 PJ of electro-fuels, i.e., 5.1 million tons, which reduces 80% of carbon dioxide emissions in LDV and HDV transport. A further scenario achieves carbon-neutrality and leads to a demand for nearly 17 million tons of e-fuel, corresponding to 640 PJ. Considering a final production rate of 5.1 million tons of electro-fuels per year leads to maximum investment costs of around EUR 350 million/year in 2036 during the ramp-up phase. The total investment costs for synthesis plants amount to EUR 4.02 billion. A carbon-neutrality scenario requires more than a factor 3 for investment for the production facilities of electro-fuels alone.

Keywords