PLoS Genetics (Mar 2021)

A transcription-centric model of SNP-age interaction.

  • Kun Wang,
  • Mahashweta Basu,
  • Justin Malin,
  • Sridhar Hannenhalli

DOI
https://doi.org/10.1371/journal.pgen.1009427
Journal volume & issue
Vol. 17, no. 3
p. e1009427

Abstract

Read online

Complex age-associated phenotypes are caused, in part, by an interaction between an individual's genotype and age. The mechanisms governing such interactions are however not entirely understood. Here, we provide a novel transcriptional mechanism-based framework-SNiPage, to investigate such interactions, whereby a transcription factor (TF) whose expression changes with age (age-associated TF), binds to a polymorphic regulatory element in an allele-dependent fashion, rendering the target gene's expression dependent on both, the age and the genotype. Applying SNiPage to GTEx, we detected ~637 significant TF-SNP-Gene triplets on average across 25 tissues, where the TF binds to a regulatory SNP in the gene's promoter or putative enhancer and potentially regulates its expression in an age- and allele-dependent fashion. The detected SNPs are enriched for epigenomic marks indicative of regulatory activity, exhibit allele-specific chromatin accessibility, and spatial proximity to their putative gene targets. Furthermore, the TF-SNP interaction-dependent target genes have established links to aging and to age-associated diseases. In six hypertension-implicated tissues, detected interactions significantly inform hypertension state of an individual. Lastly, the age-interacting SNPs exhibit a greater proximity to the reported phenotype/diseases-associated SNPs than eSNPs identified in an interaction-independent fashion. Overall, we present a novel mechanism-based model, and a novel framework SNiPage, to identify functionally relevant SNP-age interactions in transcriptional control and illustrate their potential utility in understanding complex age-associated phenotypes.