Electronic Research Archive (Jan 2024)

Oblique impact dynamic analysis of wedge friction damper with Dankowicz dynamic friction

  • Yanlong Zhang,
  • Rui Zhang,
  • Li Wang

DOI
https://doi.org/10.3934/era.2024047
Journal volume & issue
Vol. 32, no. 2
pp. 962 – 978

Abstract

Read online

Aiming at the wedge friction damper for freight train bogie, considering Dankowicz dynamic friction, the mechanical model of a three-degree-of-freedom inclined impact vibration system with gap and dynamic friction, is simplified. The mechanical model of the system is established, the motion equation of the system is obtained, and the motion state and conditions of the system are analyzed. The Poincare map is constructed by selecting a fixed collision section, and the response of the system is solved by the fourth-order Runge-Kutta numerical method with variable step size. The transition process of the system motion and the phenomenon of sticking and chatter are analyzed by numerical simulation when the external excitation frequency changes. The results show that: 1) Under certain parameters, with the change of excitation frequency, the system undergoes periodic doubling bifurcation, inverse periodic doubling bifurcation, Grazing bifurcation and Hopf bifurcation, and there is a "periodic bubble" phenomenon in the system motion. When the system excitation frequency is between 3.35–3.55, 4.425–6.12, and 7.34–7.758, the system motion has chatter and sticking phenomena; when the system excitation frequency is between 1.75–3.24 and 3.92–4.425, the sticking phenomenon disappears, and only the chatter phenomenon exists. 2) When other parameters remain unchanged, and the mass ratio decreases from 1.15 to 0.85, nonlinear dynamic phenomena such as the transition between periodic bubbles and chaotic bubbles will be found. In this paper, the bifurcation and chaos characteristics of the impact vibration system of the wedge friction damper are studied, and the rich friction-induced vibration forms such as chatter and sticking are revealed, which provides a reference for improving the stability of vehicle operation and the selection of parameters in vehicle vibration reduction design in engineering practice.

Keywords