Journal of Imaging (Aug 2021)

Real-Time 3D Multi-Object Detection and Localization Based on Deep Learning for Road and Railway Smart Mobility

  • Antoine Mauri,
  • Redouane Khemmar,
  • Benoit Decoux,
  • Madjid Haddad,
  • Rémi Boutteau

DOI
https://doi.org/10.3390/jimaging7080145
Journal volume & issue
Vol. 7, no. 8
p. 145

Abstract

Read online

For smart mobility, autonomous vehicles, and advanced driver-assistance systems (ADASs), perception of the environment is an important task in scene analysis and understanding. Better perception of the environment allows for enhanced decision making, which, in turn, enables very high-precision actions. To this end, we introduce in this work a new real-time deep learning approach for 3D multi-object detection for smart mobility not only on roads, but also on railways. To obtain the 3D bounding boxes of the objects, we modified a proven real-time 2D detector, YOLOv3, to predict 3D object localization, object dimensions, and object orientation. Our method has been evaluated on KITTI’s road dataset as well as on our own hybrid virtual road/rail dataset acquired from the video game Grand Theft Auto (GTA) V. The evaluation of our method on these two datasets shows good accuracy, but more importantly that it can be used in real-time conditions, in road and rail traffic environments. Through our experimental results, we also show the importance of the accuracy of prediction of the regions of interest (RoIs) used in the estimation of 3D bounding box parameters.

Keywords