PLoS ONE (Jan 2023)

Elastin-targeted nanoparticles delivering doxycycline mitigate cytokine storm and reduce immune cell infiltration in LPS-mediated lung inflammation.

  • Shivani Arora,
  • Narendra Vyavahare

DOI
https://doi.org/10.1371/journal.pone.0286211
Journal volume & issue
Vol. 18, no. 6
p. e0286211

Abstract

Read online

Background and purposeCytokine storm invoked during acute and chronic lung injury promotes alveolar damage and remodeling. The current study shows that degraded elastin-targeted nanoparticles releasing doxycycline (Doxy NPs) are potent in mitigating cytokines storm, migration of immune cells in the lungs, and inhibiting inflammasome pathways in the LPS mouse model.Experimental approachCytokine storm and lung injury were induced using LPS and elastase in C57BL/6 mice (rodent model for emphysema). The mice were then treated with I.V. Doxy NPs, blank NPs, or Doxy a day before LPS administration. Cytokine levels, immune cell population, and MMP activity were analyzed in broncheo-alveolar lavage fluid (BALF) 4 hours after LPS administration. Additionally, gene expression of IL-6, IL-1beta, MCP-1, NLRP3, Caspase 1 and MMPs were investigated in alveolar cells on day 3 after LPS administration.Key resultsDoxycycline NPs but not Doxycycline significantly decreased IL-6, TNF-α, IL-23 and were significantly more effective in decreasing the percentage of immune cells in the BALF. This is the first in-vivo study to demonstrate that Doxycycline can effectively inhibit inflammasome pathways in the lungs.Conclusion and implicationsIV administration of elastin antibody conjugated Doxycycline-loaded albumin NPs can effectively modulate the local immune environment in the lungs, which is not achieved by IV Doxycycline even at 100-fold higher dose. This novel method of drug delivery can effectively lead to the repurposing of traditional Doxycycline as a potential adjunct treatment for managing the cytokine storm in the lungs in COPD and viral infections.