Current Issues in Molecular Biology (Feb 2023)

Novel Phthalic-Based Anticancer Tyrosine Kinase Inhibitors: Design, Synthesis and Biological Activity

  • Elena Kalinichenko,
  • Aliaksandr Faryna,
  • Tatyana Bozhok,
  • Anna Golyakovich,
  • Alesya Panibrat

DOI
https://doi.org/10.3390/cimb45030117
Journal volume & issue
Vol. 45, no. 3
pp. 1820 – 1842

Abstract

Read online

In this work, fragments of isophthalic and terephthalic acids are proposed as a structural scaffold to develop potential inhibitors of protein kinases. Novel isophthalic and terephthalic acid derivatives were designed as type-2 protein kinase inhibitors, synthesized and subjected to physicochemical characterization. The screening of their cytotoxic actions against a panel of cell lines derived from different types of tumors (liver, renal, breast and lung carcinomas, as well as chronic myelogenous and promyelocytic leukemia) and normal human B lymphocyte, for the sake of comparison, was performed. Compound 5 showed the highest inhibitory activity against four cancer cell lines, K562, HL-60, MCF-7 and HepG2 (IC50 = 3.42, 7.04, 4.91 and 8.84 µM, respectively). Isophthalic derivative 9 revealed a high potency against EGFR and HER2, at the levels of 90% and 64%, respectively, being comparable to lapatinib at 10 µM. In general, tumor cell cultures were more sensitive to isophthalic acid derivatives than to terephthalic acid ones. In cell cycle studies, isophthalic analogue 5 showed a pronounced dose-dependent effect, and with the increase in its concentration up to 10.0 µM, the number of living cells decreased to 38.66%, while necrosis reached 16.38%. The considered isophthalic compounds had a similar docking performance to that of sorafenib against the VEGFR-2 (PDB id: 4asd, 3wze). The correct binding of compounds 11 and 14 with VEGFR-2 was validated using MD simulations and MM-GPSA calculations.

Keywords