Nanomaterials (Jan 2024)

Biaxial Structures of Localized Deformations and Line-like Distortions in Effectively 2D Nematic Films

  • Luka Mesarec,
  • Samo Kralj,
  • Aleš Iglič

DOI
https://doi.org/10.3390/nano14030246
Journal volume & issue
Vol. 14, no. 3
p. 246

Abstract

Read online

We numerically studied localized elastic distortions in curved, effectively two-dimensional nematic shells. We used a mesoscopic Landau-de Gennes-type approach, in which the orientational order is theoretically considered by introducing the appropriate tensor nematic order parameter, while the three-dimensional shell shape is described by the curvature tensor. We limited our theoretical consideration to axially symmetric shapes of nematic shells. It was shown that in the surface regions of stomatocyte-class nematic shell shapes with large enough magnitudes of extrinsic (deviatoric) curvature, the direction of the in-plane orientational ordering can be mutually perpendicular above and below the narrow neck region. We demonstrate that such line-like nematic distortion configurations may run along the parallels (i.e., along the circular lines of constant latitude) located in the narrow neck regions of stomatocyte-like nematic shells. It was shown that nematic distortions are enabled by the order reconstruction mechanism. We propose that the regions of nematic shells that are strongly elastically deformed, i.e., topological defects and line-like distortions, may attract appropriately surface-decorated nanoparticles (NPs), which could potentially be useful for the controlled assembly of NPs.

Keywords