Sustainable Environment Research (Aug 2024)

Assessment and analysis of polydimethylsiloxane-coated solar photovoltaic panels for cost-efficient solutions

  • Mohd Syukri Ali,
  • Lilik Jamilatul Awalin,
  • Amirul Syafiq Abdul Jaafar,
  • Azimah Omar,
  • Ab Halim Abu Bakar,
  • Nasrudin Abd Rahim,
  • Syahirah Abd Halim

DOI
https://doi.org/10.1186/s42834-024-00224-y
Journal volume & issue
Vol. 34, no. 1
pp. 1 – 13

Abstract

Read online

Abstract Solar photovoltaic (PV) is a crucial renewable energy source in the fight against carbon dioxide emissions, aligning well with growing energy demands. However, solar PV efficiency naturally degrades over time, primarily due to uncontrollable outdoor factors such as irradiance, humidity, shading, soiling, aging, and temperature. These collectively lead to decreased efficiency in PV systems. Soiling on PV glass surfaces significantly impacts light penetration and subsequently reduces power generation. To combat this, a self-cleaning nano-calcium carbonate coating has been proposed. The effectiveness of this method is compared with a developed solar PV thermal (PV/T) system, evaluating both performance and cost-effectiveness. After six months of outdoor exposure, the coated glass solar PV achieved an efficiency of 7.6%, surpassing bare glass solar PV at 6.0%. Moreover, the coated glass solution boasts exceptional cost-effectiveness, incurring only an annual expense of 17.6 USD per panel compared to the PV/T system of 59.8 USD per panel. These findings highlight the potential of coatings to enhance solar PV performance and economics, particularly in addressing challenging uncontrollable factors like soiling.

Keywords