Horticulturae (Nov 2023)

Genome-Wide Identification of Selenium-Responsive MicroRNAs in Tea Plant (<i>Camellia sinensis</i> L. O. Kuntze)

  • Dan Cao,
  • Juan Li,
  • Linlong Ma,
  • Yanli Liu,
  • Jianan Huang,
  • Xiaofang Jin

DOI
https://doi.org/10.3390/horticulturae9121278
Journal volume & issue
Vol. 9, no. 12
p. 1278

Abstract

Read online

Anadequate selenium (Se) intake can enhance human immunity and prevent diseases development. About one billion people in the world have varying degrees of Se deficiency in the world. Organic Se from tea infusion is the most easily absorbed and utilized Se form by the human body. Therefore the production of tea plants rich in Se is an effective way to increase Se dietary intake, but there are few studies on the involvement and functions of miRNAs in the responses of tea plants after Se treatment. MicroRNAs (miRNAs) are endogenous (non-coding) single-stranded RNAs that play crucial roles in regulating plant nutrient element acquisition and accumulation. Physiological analysis discovered that the total Se content in tea plant roots markedly increased under 0.05 mmol·L−1 selenite treatment, with no toxicity symptoms in the leaves and roots. To screen the miRNAs responsive to Se treatment in tea plants, miRNA libraries were constructed from the tea cultivar “Echa 1”. Using high-throughput sequencing, 455 known miRNAs and 203 novel miRNAs were identified in this study. In total, 13 miRNAs were selected that were differentially expressed in tea plants’ roots under 0.05 mmol·L−1 selenite treatments. Gene Ontology enrichment analysis revealed that the target genes of the differentially expressed miRNAs mainly belonged to the metabolic process, membrane, and catalytic activity ontologies. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis suggested that beta-alanine, taurine, hypotaurine, and sulfur metabolism were the most enriched pathways among the differentially expressed miRNAs, implying their involvement in Se accumulation and tolerance in tea plants. Further characterization of the data revealed that the number of novel miRNAs was comparable to that of known miRNAs, indicating that novel miRNAs significantly contributed to the regulation of Se accumulation in tea plant roots. Thisstudy lays the foundation for further research on the regulatory mechanisms underlying Se accumulation and tolerance in tea plants, providing targets to molecular breeding strategies for improving tea nutritional properties.

Keywords