Structural Dynamics (Nov 2023)

Few-femtosecond electronic and structural rearrangements of CH 4 + driven by the Jahn–Teller effect

  • Kristina S. Zinchenko,
  • Fernando Ardana-Lamas,
  • Valentina Utrio Lanfaloni,
  • Nicholas Monahan,
  • Issaka Seidu,
  • Michael S. Schuurman,
  • Simon P. Neville,
  • Hans Jakob Wörner

DOI
https://doi.org/10.1063/4.0000217
Journal volume & issue
Vol. 10, no. 6
pp. 064303 – 064303-13

Abstract

Read online

The Jahn–Teller effect (JTE) is central to the understanding of the physical and chemical properties of a broad variety of molecules and materials. Whereas the manifestations of the JTE in stationary properties of matter are relatively well studied, the study of JTE-induced dynamics is still in its infancy, largely owing to its ultrafast and non-adiabatic nature. For example, the time scales reported for the distortion of CH 4 + from the initial T d geometry to a nominal C 2 v relaxed structure range from 1.85 fs over 10 ± 2 fs to 20 ± 7 fs. Here, by combining element-specific attosecond transient-absorption spectroscopy and quantum-dynamics simulations, we show that the initial electronic relaxation occurs within 5 fs and that the subsequent nuclear dynamics are dominated by the Q2 scissoring and Q1 symmetric stretching modes, which dephase in 41 ± 10 fs and 13 ± 3 fs, respectively. Significant structural relaxation is found to take place only along the e-symmetry Q2 mode. These results demonstrate that CH 4 + created by ionization of CH 4 is best thought of as a highly fluxional species that possesses a long-time-averaged vibrational distribution centered around a D 2 d structure. The methods demonstrated in our work provide guidelines for the understanding of Jahn–Teller driven non-adiabatic dynamics in other more complex systems.