Advances in Nonlinear Analysis (May 2018)
A convex-valued selection theorem with a non-separable Banach space
Abstract
In the spirit of Michael’s selection theorem [6, Theorem 3.1”’], we consider a nonempty convex-valued lower semicontinuous correspondence φ:X→2Y{\varphi:X\to 2^{Y}}. We prove that if φ has either closed or finite-dimensional images, then there admits a continuous single-valued selection, where X is a metric space and Y is a Banach space. We provide a geometric and constructive proof of our main result based on the concept of peeling introduced in this paper.
Keywords